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The primary element of the Coriolis #owmeter is a measuring tube conveying
#uid. While the tube in the classical meter undergoes a beam-type vibration, the
shell-type tube vibrates in the second circumferential mode. This paper analyzes
theoretical characteristics of the straight-tube shell-type Coriolis meter.
A mathematical model founded on the theory of FluK gge thin shell and linearized
potential #ow was used. The results show the similarity between measuring
principles in the shell-type and the beam-type meter. Finally, we carried out
a comparison with the straight-tube beam-type meter, based on the condition that
both meters have the same pressure loss. It was found that the shell-type meter has
a higher working frequency and a larger phase shift due to #ow.
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1. INTRODUCTION

In the Coriolis #owmeter, #uid #ows through a measuring tube, clamped at both
ends. Under the in#uence of a harmonic exciting force in the proper control system
(e.g., phase-locked loop), the tube performs a harmonic vibration at its resonant
frequency. The #uid #ow causes an alteration of the fundamental mode shape and
natural frequency of the tube. Using motion sensors and processing electronics, the
tube is utilized as a mass #owrate and #uid density measuring device.

The measuring tube is usually slender and vibrates in the lateral ("rst
circumferential, beam-type) mode. Figure 1(a) shows this kind of mode shape for
the straight tube. There are many scienti"c articles discussing the physical
phenomena and theoretical characteristics of the so-called beam-type Coriolis
meter. Sultan and Hemp [1] presented the mathematical model of the straight-tube
and U-tube con"gurations, based on the theory of Euler beam and
one-dimensional #uid #ow. References [2}4] examined the nature and limitations
of the meter's ideal characteristics using the theory of small perturbations.
Subsequent work has been focused on a mathematical model extension, e.g., by
introducing the added-masses e!ect of the exciter [5] and motion sensors [6].
A particular analysis is presented by the weight vector theory, which can also deal
with the velocity distribution e!ects in the #owmeter [7}9].
0022-460X/99/470227#16 $30.00/0 ( 1999 Academic Press



Figure 1. Mode shapes of the straight measuring tube: (a) beam-type and (b) shell-type Coriolis
meter.
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In this paper, the so-called shell-type Coriolis #owmeter is analyzed [10, 11]. Its
straight measuring tube experiences a second circumferential (shell-type) vibration
mode (Figure 1(b)). The mathematical model used to describe the shell-type meter is
based on the theory of #ow-induced vibrations [12}14]. One of the topics of this
scienti"c area also investigates the stability of thin-walled tubes (cylindrical shells)
conveying #uid; the review of corresponding literature is given in references
[13, 14]. Although the scope of the #ow-induced vibration area mostly deviates
from the purpose of #ow measurement, the required theory is identical for
determining both the stability limits and the basic measuring e!ects. In the paper,
FluK gge thin shell and linearized potential #ow theories are used to describe the
measuring tube motion and the measured #uid #ow respectively. Our intention is
to present basic theoretical characteristics of the mass #owrate and #uid density
measurement with the straight-tube shell-type Coriolis meter. In order to estimate
its quality, a comparison with the straight-tube beam-type meter is also made.

2. MATHEMATICAL MODEL

2.1. BASIC ASSUMPTIONS

¹he measuring tube is a straight, circular cylindrical shell, clamped at both ends.
Its geometry is de"ned by its length ¸, wall thickness h and middle-surface radius
R (Figure 2), and its material properties are density o

t
, the Poisson ratio k and

modulus of elasticity E. Tube de#ections are small enough thus allowing the linear,
elastic shell theory to be used [15, 16]. The tube wall is su$ciently thin (h2/R2 is
small compared to unity) for FluK gge's version of the equation of motion to be
adequate. The added-mass e!ect of the exciters and motion sensors is neglected. It
is assumed that the tube vibration damping is small enough for the model with
undamped free motion to be used to obtain the desired results.



Figure 2. Model of the shell-type Coriolis meter.
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¹he -uid -ow to be measured is incompressible (#uid density o
0
is constant). It will

be characterized by means of potential #ow theory, thus, it is considered to be
inviscid and irrotational. In the absence of tube vibration, the #ow is steady and is
de"ned by its uniform velocity;

0
in x direction (Figure 2) and static pressure P

0
. It

is assumed that #ow "eld disturbances, caused by tube vibration, are su$ciently
small compared to the undisturbed #ow. Therefore, the linearized ("rst order)
potential #ow theory [17] could be used in order to describe the in#uence of #ow
on tube vibration.

2.2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The shell-tube de#ections can be described by axial, circumferential and radial
middle-surface displacements (u, v, w) in the directions of the cylindrical polar
co}ordinates (x, h, r) (Figure 2). The FluK gge's equations of motion for a circular
cylindrical shell [15] could be written in a symbolic notation as
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where ¸
ij

are linear di!erential operators (appendix), R
i
is the tube internal-surface

radius and P
i
is the #uid pressure on the internal surface. The operators ¸

ij
include

partial derivatives with respect to x and h and tube geometrical and material
parameters. The quotient R

i
/R in equation (1) represents the ratio between the area

of the tube internal and middle-surface. For clamped ends, the tube boundary
conditions are given by
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"0 at x"0, x"¸. (2)

The #uid}tube interaction is given by the #uid pressure P
i
, which may be

determined by the unsteady Bernoulli equation:
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where U is the velocity potential, < is the magnitude of the velocity vector
V"(<

x
,<h,<3

) and P is the pressure in the perturbed #ow "eld. The relation
between the velocity "eld and the velocity potential is
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where U is considered to consist of the undisturbed component ;
0
x and the

perturbation velocity potential u. Expressing the pressure in the similar way,
P"P

0
#p, and neglecting second order perturbations in equation (3), the #uid

pressure on the internal surface of the tube is
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The static e!ect of the pressure P
0

exceeds the scope of our paper. Therefore, the
#uid}tube interaction is only the consequence of the tube vibration (P

i
,p

i
). Using

equation (4) and the continuity equation of the incompressible #uid #ow, e)V"0,
leads to the Laplace equation for perturbation velocity potential u:

L2u
Lr2

#

1
r
Lu
Lr

#

1
r2

L2u
Lh2

#

L2u
Lx2

"0. (6)

A general solution of equation (6) has to satisfy boundary conditions that no #uid
passes through the tube surface,
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and that the velocity potential remains "nite inside the tube.

2.3. SOLUTION PROCEDURE

The solution is obtained by using a procedure, similar to that in reference [18].
The derivation of the #uid pressure does not include the realistic #ow conditions at
the tube ends, which come after the fact that w is identically zero for x(0 and
x'¸. This simpli"cation may have a considerable in#uence when ¸/R is too small
(see, for example, references [19}21], where Fourier integral theory and Galerkin's
method are used to obtain the solution). For tubes long enough (¸/R*10 for the
most part of the paper), these errors could be neglected.

If the shell-tube vibration is periodic circumferentially and harmonic in time,
general solutions for axial, circumferential and radial displacement can be ex-
pressed in a complex form as
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j
e*jjx cos nh e*ut, (8)
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and similarly for the perturbation velocity potential as

u"+
+

D
j
(r) e*jjx cos nh e*ut, (9)

where j
j
are the eigenvalues, n is the circumferential wave number and u is the

circular frequency in the range of calculations in this paper, u is wholly real. By
introducing equation (9) into equations (5)}(7), the #uid pressure distribution on the
internal tube surface, expressed as the function of the tube motion, is
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where w"+
j
w

j
and I

n
( ) is nth order modi"ed Bessel function of the "rst kind.

Term L2w
j
/Lt2 is a translational acceleration, 2;

0
L2w

j
/Lt Lx is a Coriolis

acceleration (L2w
j
/LtLx is a local angular velocity) and ;2

0
L2w

j
/Lx2 is a centrifugal

acceleration (L2w
j
/Lx2 is a local curvature).

By introducing equation (10) into equation (1), one can proceed to the solution of
FluK gge's equations. Using the assumed solution for displacements (equation (8))
yields a homogeneous set of three linear equations in A

j
, B

j
and C

j
. For non-trivial

solutions, the determinant of the coe$cients has to vanish thus yielding a
transcendental equation in j

j
. For eight boundary conditions (equation (2)), eight

values of j
j
(and eight solutions A

j
/C

j
, B

j
/C

j
) are of interest. It is appropriate to

choose the eigenvalues with the smallest modulus, because they contribute the most
to the formation of the mode shapes [18]. Introducing the boundary conditions (2)
yields a homogeneous set of eight linear equations in C

j
. Setting the determinant of

the coe$cients equal to zero, one obtains a transcendental equation in the circular
frequency u. Its mth consecutive positive root is the natural frequency of the
vibrating tube with m axial half-waves and n circumferential waves.

The actual displacements and perturbation velocity potential are calculated as
the real part of the supposed complex solutions (equations (8) and (9)). The results
can be written as follows:

u"uN (x) cos nh cos (ut#/
u
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p
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where uN , vN , wN , u6 and /
u
, /

v
, /

w
, /u are corresponding amplitudes and initial phases

respectively. The displacements and velocity potential are normalized according to

P
L

0

wN (x)2dx"¸. (12)

The above calculation gives all claimed parameters to analyze free
vibration modes of the shell-tube with the internal #uid #ow: the natural frequency
and the mode shapes. Therefore, one can use this model to characterize the
behaviour of the shell-type Coriolis meter.



232 J. KUTIN AND I. BAJSICD
3. METER CHARACTERISTICS

The Coriolis meter is used to measure the mass #owrate q
m
";

0
o
0
nR2

i
and #uid

density o
0
. This paper deals with the shell-type Coriolis meter whose tube vibration

models composed of two circumferential waves (n"2) and one axial half-wave
(m"1). Its measuring e!ect is obtained from signals of two motion sensors, which
detect the tube vibration in a radial direction. The sensors are located symmetrically
with regard to the midpoint of the tube length. Therefore, their axial positions
could be given as x

1
"(¸!s)/2 and x

2
"(¸#s)/2, where s is the distance between

the sensors (Figure 2). With the intention of attaining the largest radial mode
amplitude, the most appropriate measuring plane (rx plane) in the circumferential
direction is at h

1
"h

2
"kn/2, where k is any integer.

Figure 3 shows the time dependence of the axial and radial displacement, u and
w, (the circumferential displacement v is zero here) in the measuring plane for
selected input data. Due to the relative small e!ect of the axial mode, the phase and
time di!erence between signals from the sensors, D/ and Dt, can be determined as

D/"/
w
(x

2
)!/

w
(x

1
), Dt"D//u. (13)

If there is no #uid #owing inside the tube, the phase di!erence is zero (Figure 3(a)).
However, the Coriolis force, caused by #uid #ow, makes an asymmetrical alteration
in the basic mode shape: the radial motion of the tube inlet lags behind the outlet
one (Figure 3(b)). Figure 4 shows the tube cross-section in the measuring plane and
the isopotential lines of the perturbed #uid #ow at the moment ut"n/4. Its
comparison with the tube radial mode in Figure 3 highlights the interaction
between the vibrating tube and internal #uid #ow.
Figure 3. Time dependence of axial and radial tube de#ection, u and w, at h"0, circumferential
de#ection v is zero (m"1, n"2, o

0
"1000 kg/m3, ¸"0)15 m, R"10 mm, h"0)5 mm, k"0)3,

o
t
"4500 kg/m3, E"110 GN/m2): (a) quiescent #uid; (b) #owing #uid, q

m
"50 kg/s.



Figure 4. Perturbation velocity isopotential lines in the cross-section of the vibrating tube at h"0,
n and ut"n/4 (data as in Figure 3): (a) quiescent #uid; (b) #owing #uid, q

m
"50 kg/s. 14 contours

between !95 and 20 m2/s (shading from black to white).

Figure 5. Variation of the natural frequency with the mass #owrate for three values of the #uid
density (other data as in Figure 3): **, o

0
"1500 kg/m3; - - -, o

0
"1000 kg/m3; ) ) ) ), o

0
"500 kg/m3.
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Figures 5 and 6 show the #uid #ow e!ect on the natural frequency and the phase
di!erence, respectively, for the selected input data. The #ow range represents the
stable, under-critical region of the vibrating system. Over the critical mass #owrate
q
m,cr

, static instability (also called buckling or divergence [14]) occurs: the natural
frequency vanishes and negative vibrational damping (ampli"cation of vibration)
occurs. In the given example, the mode shape at the critical #owrate has a similar
form to the mode shape for m"2 at the zero #ow (Du

cr
"n). The behaviour can be

changed for other input data, e.g., for di!erent tube length (Figure 7). A denotation
m

cr
is used for the number of axial half-waves at the critical #owrate.



Figure 6. Variation of the relative phase di!erence with the mass #owrate for three values of the
#uid density (s/¸"0)5, other data as in Figure 3): **, o

0
"1500 kg/m3; - - -, o

0
"1000 kg/m3;

) ) ) ) , o
0
"500 kg/m3.

Figure 7. Variation of the relative phase di!erence with the mass #owrate for three values of the
tube length (s/¸"0)5, other data as in Figure 3):**, ¸"0)1 m (m

cr
"1); - - -, ¸"0)15 m (m

cr
"2);

) ) ) ), ¸"0)2 m (m
cr
"3).
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Approaching the stability limit leads to intensive alteration of the system
characteristics. For su$ciently small #owrates, linear dependence between the
phase di!erence and mass #owrate could be seen (Figures 6 and 7). If the time
di!erence is used instead of the phase di!erence, a small #uid density e!ect can be
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achieved (Figure 8). Results of this kind allow the time di!erence to be used for
mass #owrate measurement in the Coriolis meter.

In contrast to the time di!erence, the natural frequency varies signi"cantly with
#uid density and is little e!ected by su$ciently small #owrates (Figures 5 and 9).
Figure 8. Variation of the time di!erence with the mass #owrate for three values of the #uid density
(s/¸"0)5, other data as in Figure 3): **, o

0
"1500 kg/m3; - - -, o

0
"1000 kg/m3; ) ) ) ),

o
0
"500 kg/m3.

Figure 9. Variation of the natural frequency with the #uid density for three values of the mass
#owrate (other data as in Figure 3): **, q

m
"0 kg/s; - - -, q

m
"10 kg/s; ) ) ) ), q

m
"20 kg/s.
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The characteristic is non-linear, but it is appropriate to use the alterations in
natural frequency for #uid density measurement.

The above discussion shows that the measuring characteristics of the shell-type
Coriolis meter are similar to those of the beam-type meter (see, e.g., references
[1}3]). Therefore, one could expect an identical condition for the preservation of
the ideal meter characteristics (independence of the mass #owrate and #uid density
measurement, linear dependence between the phase or time di!erence and mass
#owrate), that is q2

m
@ q2

m,cr
[2].

4. COMPARISON BETWEEN THE SHELL-TYPE AND THE BEAM-TYPE METER

Relatively small sensitivity and large pressure drop are two of the most negative
characteristics of the Coriolis meter. The magnitude of measurable phase di!erence
(measurable with appropriate precision) de"nes the lower limit of the #owrate
measuring range. However, the upper mass #owrate is limited by the admissible
pressure drop and independence of mass #owrate and #uid density measurement.
Therefore, producers try to "nd new meter con"gurations, some of them using
curved measuring tubes that enable a larger ratio between the measuring e!ect and
pressure loss. However, the straight-tube meters have some signi"cant advantages:
wider dynamic range (i.e., the frequency range without the resonant e!ects), simple
construction and smaller dimensions. In this section, we compare the characteristics
of the shell-type (n"2, m"1) and the beam-type (n"1, m"1) straight-tube
Coriolis meter.

4.1. COMPARISON BETWEEN THE MATHEMATICAL MODELS

Before making a comparison between the characteristics of meters, one has to
decide what kind of theoretical model will be used to describe the beam-type meter.
Its theoretical analyses are mostly based on the theory of Euler beam and
one-dimensional #uid #ow, e.g. [1}3]. The pertaining equation of the tube lateral
motion has a form

EI
L4w8
Lx4

#M
t

L2w8
Lt2

#M
0A;2

0

L2w8
Lx2

#2;
0

L2w8
LxLt

#

L2w8
Lt2B"0 (14)

and the boundary conditions for the clamped}clamped tube are

wJ "
Lw8
Lx

"0 at x"0, x"¸, (15)

where wJ is the lateral tube de#ection, I is the second moment of tube cross-sectional
area about a diameter, M

t
and M

0
are the tube and #uid mass per unit length

respectively.
Certainly, the beam-type meter could also be dealt with the model shown in

section 2 (n"1). Figure 10 shows the variation in natural frequency and phase
di!erence of the "rst lateral mode with the tube length. For a comparison, the



Figure 10. Variation of the natural frequency and phase di!erence with the tube length for three
di!erent mathematical models (n"1, q

m
"1 kg/s, s/¸"0)5, other data as in Figure 3):**, FluK gge

shell theory (8 boundary conditions); - - -, FluK gge shell theory (4 boundary conditions); ) ) ) ), Euler
beam theory.
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observed parameters were also calculated from FluK gge's shell equations with four
boundary conditions (w"Lw/Lx"0 at both ends, four values of j

j
with the

smallest modulus). It is evident that the theory of Euler beam and one-dimensional
#uid #ow is more appropriate for tubes with a su$cient length ratio ¸/R. The
validity of the beam theory is also conditional on su$ciently large wall thickness
ratio h/R. As FluK gge shell theory is more general and &&exact'', the model shown in
section 2 is also used for beam-type meter analyses.

4.2. COMPARISON BETWEEN THE METERS

In the comparative analysis of the shell- and the beam-type Coriolis meter, the
following basic facts are considered:

(i) ¹he measuring tube. The wall thickness ratio h/R is the same for both meters,
but the length ratio ¸/R is generally smaller for the shell-type meter. The meter
tubes have the same material properties (o

t
, E, k) and absolute roughness e of the

internal surface.
(ii) ¹he -uid -ow to be measured. For both meters, the same values of mass
#owrate q

m
and pressure drop DP are chosen. The #uid density o

0
and kinematic

viscosity l
0

are also the same for both meters.
In the calculation of pressure drop through the Coriolis meter, consider only the

line losses in the measuring tube. They can be de"ned as

DP"j
¸

D
i

o
0
;2

0
2

, (16)
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where j is the line loss coe$cient and can be determined from the
Colebrook}White equation [22]:

1

Jj
"1)74!2 logA

2e
D

i

#

18)7

ReJjB, (17)

where D
i
is the tube internal diameter, D

i
"2R

i
, and Re is the Reynolds number,

Re "D
i
;

0
/m

0
.

In the above procedure, the tube dimensions h, R and ¸ could be iteratively
calculated for given ratios h/R and ¸/R and other assumptions. Therefore, we have
all the required input data to calculate the natural frequency and phase di!erence of
the measuring system. The described procedure could be an appropriate way to
compare the theoretical characteristics of di!erent type Coriolis meters. With
equivalent pressure loss, we give assurance of choosing meters with the identical
limit of the upper mass #owrate. So the phase di!erence, determined at that mass
#owrate, could be used to compare the sensitivity of meters.

Figures 11 and 12 show the variation of the natural frequency and the phase
di!erence, respectively, with the tube length ratio for the shell-type (n"2, m"1)
and the beam-type (n"1, m"1) Coriolis meter. For both meters, the natural
frequency decreases and the phase di!erence increases with the increasing length
ratio. (Although it is not calculated in the paper, it should be known that a similar
trend is typical for the decreasing thickness ratio at the constant length ratio.)
Generally, the shell-type meter has both observed parameters larger by nearly one
order of magnitude. The higher working frequency extends the meter dynamic
range and the higher frequency signals are also more suitable for electronic
Figure 11. Variation of the natural frequency with the tube length ratio for n"2 and 1 (m"1,
o
0

"1000 kg/m3, l
0
"1 mm2/s, e"0)01 mm, q

m
"6 kg/s, DP"0)4 bar, h/R"0)05, k"0)3,

o
5
"4500 kg/m3, E"110 GN/m2): **, shell-type meter, n"2; - - -, beam-type meter, n"1.



Figure 12. Variation of the phase di!erence with the tube length ratio for n"2 and 1 (s/¸"0)5,
other data as in Figure 11): **, shell-type meter, n"2; - - -, beam-type meter, n"1.

Figure 13. Variation of the critical mass #owrate with the tube length ratio for n"2 and 1 (data as
in Figure 11): **, shell-type meter, n"2; - - -, beam-type meter, n"1.
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processing with regard to the noise in#uence. In addition, the larger phase
di!erence could be used for widening the measuring range or reducing pressure
loss.

In section 3, it is shown that approaching the stability boundary gives rise to
a dependence of the mass #owrate and #uid density measurement. For this reason,
Figure 13 shows the variation of the critical mass #owrate for both meters. The
beam-type meter is associated with one axial half-wave at the critical #owrate



Figure 14. Variation of the natural frequency with the tube length ratio for three values of
circumferential wave-number (data as in Figure 11): **, n"2; - - -, n"1; ) ) ) ), n"3.
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(m
cr
"1). The shell-type meter could also result in the higher values of m

cr
;

boundaries between neighbouring m
cr

are visible as discontinuities in the curve in
Figure 13. A weak point of the beam-type meter is its critical #ow decreasing in the
direction of increasing sensitivity.

Finally, a look at the nature of the lowest natural frequencies of the system under
research (Figure 14). For a su$ciently short, thin shell, the natural frequencies can
be similar (and also coincide) for di!erent circumferential modes n. This could make
controlling the working mode of the meter more di$cult. However, the position of
the exciters shown in Figure 2 and their counter-phase action prevent the existence
of the modes with odd circumferential waves (n"1, 3, 5, ...) and even axial half-
waves (m"2, 4, 6, ...), where are also the most &&dangerous''modes for the shell-type
Coriois meter.

5. CONCLUSION

This paper presents the theoretical analyses of the shell-type Coriolis #owmeter
primary part, which is the straight measuring tube conveying #uid to be measured.
The measuring principle of the shell-type Coriolis meter is identical to that of the
beam-type. The Coriolis force, caused by #uid #ow, changes the fundamental mode
shape of the measuring tube. The phase di!erence between the radial motion of two
symmetrically positioned measuring points is linearly dependent on the mass
#owrate. Using the time di!erence, independence of the #uid density is assured.
Due to the #uid added mass e!ect on the system natural frequency, the Coriolis
meter is used for #uid density measurement, too.

However, it was found that the shell-type Coriolis meter has some signi"cant
advantages over the beam-type one. A comparison was made using measuring
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tubes with the same internal pressure loss. In general, the shell-type meter provides
an essentially larger natural frequency and phase di!erence. It also gives an
assurance of a su$cient distance from the stability boundary.

The mathematical model used in this paper contains some limitations in
comparison with the actual realization of the Coriolis #owmeters. The model
describes only the mechanical part of the meter without the electronics. However,
there are also other parameters not included: the damping of the vibrating system,
the e!ects of the local exciting force, added masses of the exciter and motion
sensors, elastic boundary conditions, etc.
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APPENDIX

According to the symbolic form of FluK gge's equations (1) the linear di!erential
operators can be expressed as
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where k is the Poisson ratio, b"o
t
(1!k2)R2/E, k"h2/(12R2) and m"x/R.
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